

HAYNES[®] R-41 alloy

Vacuum-melted, nickel-based HAYNES[®] R-41 alloy has exceptionally high strength at temperatures in the range of 1200 to 1800°F (649 to 982°C). The alloy is a precipitation-hardening type and strength is developed by various solutioning and aging heat treatments. Because of its high strength and good oxidation resistance, the alloy is being used in afterburner parts and nozzle diaphragm partitions in current gas turbine engines. In the annealed condition, the alloy is ductile and has essentially the same forming characteristics as 18-8 stainless steel and other nickel-based alloys. It is stronger, however, and has a greater resistance to forming. The alloy has been formed with success on drop hammers, expanding mandrels and stretch formers.

Sound fusion welds are dependent on cleanliness and good joint fit-up. Inert-gas-shielded arc welding with a direct current power supply gives best results. Shielding gas should be used for both the arc and back-up. The weld area should be kept cool by use of copper back-up bars or water-cooled fixtures.

Good resistance welds are made by using high tip pressures and short welding times. Clean and well-fitted laying surfaces are essential. Wrought products except wire are normally furnished solution heat-treated at 1975°F (1079°C), rapid quenched. Wire is normally mill annealed.

Mechanical properties can be tailored by selecting various combinations of solutioning and aging treatments. In general, higher solution heat-treating temperatures result in better room-temperature ductility and improved formability. Stress-rupture strength is also improved by this type of treatment. Lower solutioning temperatures produce higher tensile strengths at temperatures up to about 1700°F (927°C). The effect of solution heat-treating temperature on tensile strength and stress-rupture strength is shown on page 3.

HAYNES R-41 alloy is made in the form of sheet, strip, plate, bar, and wire.

The following specifications have been established for R-41 alloy: Plate, Sheet, and Strip: AMS5545 Bar (Solution Heat Treated): AMS5712

PROPERTIES DATA - The properties listed herein are typical or average values based on laboratory tests conducted by the manufacturer. They are indicative only of the results obtained in such tests and should not be considered as guaranteed maximums or minimums. Materials must be tested under actual service conditions to determine their suitability for a particular purpose.

-2-

Nominal Chemical Composition, Weight Percent										
Nickelª	Chromium	Cobalt	Iron	Molybdenum	Titanium	Aluminum	Silicon	Manganese	Carbon	Boron
58	19	11	5*	10	3.1	1.5	0.5*	0.1*	0.09	0.006
* Maximum ^a As balance										

Average Physical Properties

Physical Property	Temp., °F	British Units	Temp., ℃	Metric Units
Density	70	0.298 lb./in. ³	21	8.25 g/cm ³
Melting Range	2385-2450		1310-1345	
Mean Coefficient of Thermal Expansion	70-1000 70-1200 70-1400 70-1500 70-1600 70-1700 70-1800	 7.5 microinches/in°F 7.8 microinches/in°F 8.2 microinches/in°F 8.5 microinches/in°F 8.8 microinches/in°F 9.1 microinches/in°F 9.4 microinches/in°F 	21-538 21-649 21-760 21-816 21-871 21-927 21-982	13.5 x 10 ⁻⁶ m/m-K 14.0 x 10 ⁻⁶ m/m-K 14.8 x 10 ⁻⁶ m/m-K 15.2 x 10 ⁻⁶ m/m-K 15.7 x 10 ⁻⁶ m/m-K 16.3 x 10 ⁻⁶ m/m-K 16.8 x 10 ⁻⁶ m/m-K
Thermal Conductivity (Approximate)	300 400 500 600 800 1000 1100 1200 1300 1400 1500 1600	 80 Btu-in./ft.²-hr°F 87 Btu-in./ft.²-hr°F 95 Btu-in./ft.²-hr°F 102 Btu-in./ft.²-hr°F 117 Btu-in./ft.²-hr°F 131 Btu-in./ft.²-hr°F 139 Btu-in./ft.²-hr°F 146 Btu-in./ft.²-hr°F 153 Btu-in./ft.²-hr°F 161 Btu-in./ft.²-hr°F 168 Btu-in./ft.²-hr°F 175 Btu-in./ft.²-hr°F 	149 204 260 316 427 538 593 649 704 760 816 871	11.5 W/m-K 12.5 W/m-K 13.6 W/m-K 14.7 W/m-K 16.8 W/m-K 18.8 W/m-K 20.0 W/m-K 21.0 W/m-K 22.0 W/m-K 23.1 W/m-K 24.1 W/m-K 25.1 W/m-K
Specific Heat	70	0.108 Btu/lb°F	21	0.108 cal./g°C
Magnetic	70	<1.002 at 200 oersteds	21	<1.002 at 200 oersteds

Tensile Data, Sheet									
Form	Condition	Test Temp., °F	Ultimate Tensile Strength, psi	Yield Strength at 0.2% offset, psi	Proportional Limit, psi	Elongation in 2 in., percent	Elastic Modulus psi x 10 ⁶		
Sheet, 0.025 in. thick*	Solution heat- treated at 1979 °F, WQ, plus 30 min. at 1950 °F, aged 16 hrs. at 1400 °F, AC	1200 1400 1600	158,800 140,100 100,700	128,400 119,000 76,800	90,800 84,600 47,700	7 4 2	26.9 23.7 15.9		
Sheet 0.050 in. thick*	Solution heat- treated at 1975 °F, WQ, plus 30 min. at 1950 °F, AC; aged 16 hrs. at 1400 °F, AC	70 1000 1200 1400 1600 1800 2000	194,800 172,200 171,000 151,100 106,400 41,500 11,400	155,200 140,600 134,900 125,100 81,600 25,600 5,700	117,100 101,900 96,700 96,700 51,600 17,600 4,400	14 14 6 5 15 47	32.2 24.0 23.5 19.3 17.4 16.2 -		

*Strain rates controlled at 0.005 inches per inch per minute to a point beyond the 0.2 percent yield strength. WQ-Water-Quenched AC-Air-Cooled

Tensile, Stress-Rupture and Hardness Data, Sheet										
		Test	Ultimate Tensile	Yield Strength at 0.02%	Elongation	Stress-Rupture at 25,000 psi 1650°F		Rockwell Hardness		
Form	Condition	°F	Strength, psi	offset, psi	in 2 in., percent	Life, hrs.	Elongation percent	Annealed	Aged	
Sheet less than 0.030-in. thick	30 min. at 1950°F, AC; aged 16 hrs. at 1400°F, AC	1400	144,400ª	120,500ª	5ª	-	-	Rb 86	Rc 39	
	30 min. at 2050°F, AC; aged 16 hrs. at 1650°F, AC	1400	131,100 ^b	104,200 [⊳]	8⁵	24.3	5	Rb 88	Rc 33	
Sheet 0.030- 0.100-in. thick excl.	30 min. at 1950°F, AC; aged 16 hrs. at 1400°F, AC	1400	153,700°	124,200°	10°	-	-	Rb 87	Rc 40	
	30 min. at 2050°F, AC; aged 16 hrs. at 1650°F, AC	1400	136,500 ^d	106,400 ^d	12 ^d	40.9	11	Rb 97	Rc 34	

AC-Air-Cooled Based on statistical average of: a-13 tests; b-46 tests; c-32 tests; d-48 tests

^{*} See page 3 for heat-treatment.

Test Temp., °F	Modulus of Elasticity, psi	Shear Modulus, psi	Poisson's Ratio
80	31,600,000	12,100,000	0.31
300	30,900,000	11,700,000	0.31
500	29,600,000	11,200,000	0.32
700	28,700,000	10,900,000	0.32
900	27,600,000	10,400,000	0.32
1000	27,200,000	-	-
1100	26,400,000	10,000,000	0.33
1200	25,900,000	-	-
1250	25,800,000	9,700,000	0.33
1400	24,800,000	9,300,000	0.33
1500	24,100,000	-	-
1550	23,700,000	8,800,000	0.34
1600	23,200,000	-	-
1700	21,800,000	8,000,000	0.35

Elastic Modulus, Shear Modulus, and Poisson's Ratio

Compression Data, Sheet

Form	Condition	Test Temp., °F	Yield Strength at 0.2% offset, psi	Proportional Limit, psi	Tangent Modulus, 10 ⁶ psi
Sheet, 0.050 in. thick	Solution heat-treated at 1975°F, WQ; plus 30 min. at 1950°F, AC; aged 16 hrs. at 1400°F, AC	Room 1000 1200 1400 1600 1800	158,700 145,200 147,100 130,100 102,600 27,100	121,200 113,100 113,400 81,200 68,300 12,200	30.4 25.9 25.3 23.2 19.7 16.0

WQ - Water-Quenched AC - Air-Cooled

^{*} See page 5 for heat-treatment.

STANDARD PRODUCTS

By Brand or Alloy Designation:

HAYNES International

HASTELLOY® Family of Corrosion-Resistant Alloys

B-3[®], C-4, C-22[®], C-276, C-2000[®], C-22HS[®], G-30[®], G-35[®], G-50[®], HYBRID-BC1[™], and N

HASTELLOY Family of Heat-Resistant Alloys

S, W, and X

HAYNES® Family of Heat-Resistant Alloys

25, R-41, 75, HR-120[®], HR-160[®], 188, 214[®], 230[®], 230-W[®], 242[®], 263, 282[®], 556[®], 617, 625, 65SQ[®], 718, X-750, MULTIMET[®], NS-163[™], and Waspaloy

Corrosion-Wear Resistant Alloy

Wear-Resistant Alloy

ULTIMET®

6B

HAYNES Titanium Alloy Tubular

Ti-3Al-2.5V

Standard Forms: Bar, Billet, Plate, Sheet, Strip, Coils, Seamless or Welded Pipe & Tubing, Pipe Fittings, Flanges, Fittings, Welding Wire, and Coated Electrodes

Properties Data: The data and information in this publication are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature, and are believed to be reliable. However, Haynes does not make any warranty or assume any legal liability or responsibility for its accuracy, completeness, or usefulness, nor does Haynes represent that its use would not infringe upon private rights. Any suggestions as to uses and applications for specific alloys are opinions only and Haynes International, Inc. makes no warranty of results to be obtained in any particular situation. For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Material Safety Data Sheet supplied by Haynes International, Inc. All trademarks are owned by Haynes International, Inc.

Global Headquarters

1020 West Park Avenue P.O. Box 9013 Kokomo, Indiana 46904-9013 (USA) Phone: 1-800-354-0806 or (765) 456-6012 Fax: (765) 456-6905 www.haynesintl.com