Datasheet ^(Q) CARPENTER

Custom 465[®] Stainless

Unit Display: Metric	
----------------------	--

E-Mail Datasheet Add to My Materials Request More Information

	Identification	
U.S. Patent Number		
 5,681,528 	• 5,855,844	
UNS Number		

• \$46500

Type Analysis			
Carbon (Maximum)	0.02 %	Manganese (Maximum)	0.25 %
Phosphorus (Maximum)	0.015 %	Sulfur (Maximum)	0.010 %
Silicon (Maximum)	0.25 %	Chromium	11.00 to 12.50 %
Nickel	10.75 to 11.25 %	Molybdenum	0.75 to 1.25 %
Titanium	1.50 to 1.80 %	Iron	Balance

General Information

Description

Custom 465 $^{\mbox{\ensuremath{\mathbb{R}}}}$ stainless is a premium melted, martensitic, age-hardenable alloy capable of ultimate tensile strength in excess of 250 ksi in the overaged (H 950) condition. This alloy was designed to have excellent notch tensile strength and fracture toughness in this condition.

Overaging to the H1000 condition provides a superior combination of strength, toughness and stress corrosion cracking resistance compared with other high-strength PH stainless alloys such as Custom 455® stainless or Carpenter 13-8 stainless.

Corrosion Resistance

The general corrosion resistance of Custom 465 stainless approaches that of Type 304 stainless. Exposure to 5% neutral salt spray at 95°F (35°C) (per ASTM B117) caused little or no rusting after 200 hours regardless of condition (i.e., annealed or H900-H1100 conditions).

Double-cantilever-beam tests conducted in 3.5% NaCl (pH 6) show Custom 465 stainless to possess inherently good resistance to stress corrosion cracking which improves with increasing aging temperature.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Moderate	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Restricted
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Restricted	Humidity	Excellent

Corrosion Resistance

Condition	Transverse Y.S. (ksi)	T₋L K₀ ksi√in.	r∖i ksi√in.	Kisco ksi√in.	Remarks
H950	226	76	68	>68	No Cracking
H1000	213	108	98	>98	No Cracking
H1050	196	127	114	≻114	No Cracking

1/2"-thick double cantilever beam specimens (T-L orientation) from 4-1/2" x 2-3/4" forged bar exposed to 3.5 w/o NaCI (pH 6) for 1270 hours.

	Properties
Physical Properties	
Density	
Annealed/CT	7810 kg/m³
Condition H 900	7820 kg/m³
Condition H 950	7830 kg/m³
Condition H 1000	7840 kg/m³

Condition g/cm³ Annealed/CT 7.81 H900 7.82 H950 7.83 H1000 7.84 H1050 7.84 H1100 7.86

Mean CTE 10.3 x 10⁻⁶ cm/cm/°C 25 to 100°C, Annealed/CT 25 to 200°C, Annealed/CT 10.8 x 10⁻⁶ cm/cm/°C 25 to 300°C, Annealed/CT 10.9 x 10⁻⁶ cm/cm/°C 25 to 400°C, Annealed/CT 11.1 x 10⁻⁶ cm/cm/°C 10.9 x 10⁻⁶ cm/cm/°C 25 to 500°C, Annealed/CT 9.86 x 10⁻⁶ cm/cm/°C 25 to 600°C, Annealed/CT 25 to 100°C. Condition H 900 10.4 x 10⁻⁶ cm/cm/°C 11.1 x 10⁻⁶ cm/cm/°C 25 to 200°C, Condition H 900 25 to 300°C, Condition H 900 11.4 x 10⁻⁶ cm/cm/°C 25 to 400°C, Condition H 900 11.7 x 10⁻⁶ cm/cm/°C 12.0 x 10⁻⁶ cm/cm/°C 25 to 500°C, Condition H 900 11.2 x 10⁻⁶ cm/cm/°C 25 to 600°C, Condition H 900 25 to 100°C, Condition H 1000 10.6 x 10⁻⁶ cm/cm/°C 25 to 200°C, Condition H 1000 11.1 x 10⁻⁶ cm/cm/°C 11.5 x 10⁻⁶ cm/cm/°C 25 to 300°C, Condition H 1000 11.7 x 10⁻⁶ cm/cm/°C 25 to 400°C, Condition H 1000 25 to 500°C, Condition H 1000 12.0 x 10⁻⁶ cm/cm/°C 12.2 x 10⁻⁶ cm/cm/°C 25 to 600°C, Condition H 1000 11.3 x 10⁻⁶ cm/cm/°C 25 to 100°C, Condition H 1100 12.0 x 10⁻⁶ cm/cm/°C 25 to 200°C, Condition H 1100 12.4 x 10⁻⁶ cm/cm/°C 25 to 300°C, Condition H 1100 25 to 400°C, Condition H 1100 12.7 x 10⁻⁶ cm/cm/°C 25 to 500°C, Condition H 1100 12.9 x 10⁻⁶ cm/cm/°C 25 to 600°C, Condition H 1100 13.1 x 10⁻⁶ cm/cm/°C

7840 kg/m³

7860 kg/m³

Mean coefficient of thermal expansion

Temperat	ure Range	Coeff	icient of Exp	ansion (10%/°C	;)
۴F	°C	Annealed/CT	H900	H1000	H1100
77/212	25/100	10.30	10.40	10.60	11.30
77/392	25/200	10.80	11.10	11.10	12.00
77/572	25/300	10.90	11.40	11.50	12.40
77/752	25/400	11.10	11.70	11.70	12.70
77/932	25/500	10.90	12.00	12.00	12.90
77/1112	25/600	9.86	11.20	12.20	13.10

Thermal Conductivity	
23°C, Annealed/CT	14.07 W/m/K
100°C, Annealed/CT	15.65 W/m/K
200°C, Annealed/CT	17.71 W/m/K
300°C, Annealed/CT	19.37 W/m/K
400°C, Annealed/CT	21.43 W/m/K
500°C, Annealed/CT	23.85 W/m/K
600°C, Annealed/CT	25.76 W/m/K
23°C, Condition H 900	14.85 W/m/K

100°C, Condition H 900	16.89 W/m/K
200°C, Condition H 900	19.21 W/m/K
300°C, Condition H 900	20.97 W/m/K
400°C, Condition H 900	22.48 W/m/K
500°C, Condition H 900	24.52 W/m/K
600°C, Condition H 900	26.32 W/m/K
23°C, Condition H 1000	15.83 W/m/K
100°C, Condition H 1000	18.02 W/m/K
200°C, Condition H 1000	20.25 W/m/K
300°C, Condition H 1000	21.71 W/m/K
400°C, Condition H 1000	23.55 W/m/K
500°C, Condition H 1000	25.58 W/m/K
600°C, Condition H 1000	27.62 W/m/K
23°C, Condition H 1050	15.80 W/m/K
100°C, Condition H 1050	18.09 W/m/K
200°C, Condition H 1050	20.42 W/m/K
300°C, Condition H 1050	21.99 W/m/K
400°C, Condition H 1050	23.51 W/m/K
500°C, Condition H 1050	25.30 W/m/K
600°C, Condition H 1050	26.91 W/m/K

Thermal conductivity

Temperature Range		W/m•K (BTU•in/ft²•h•F)			
°F	°C	Annealed/CT	H900	H1000	H1050
73	23	14.06 (97.6)	14.85 (103.0)	15.83 (109.8)	15.80 (109.6)
212	100	15.65 (108.6)	16.89 (117.2)	18.01 (125.0)	18.09 (125.5)
392	200	17.71 (122.9)	19.21 (133.3)	20.25 (140.5)	20.42 (141.7)
572	300	19.37 (134.4)	20.97 (145.5)	21.71 (150.6)	21.99 (152.6)
752	400	21.43 (148.7)	22.49 (156.0)	23.55 (163.4)	23.51 (163.1)
932	500	23.85 (165.5)	24.52 (170.1)	25.58 (177.5)	25.29 (175.5)
1112	600	25.76 (178.7)	26.32 (182.6)	27.61 (191.6)	26.91 (186.7)

Modulus of Elasticity (E)

Condition H 1000	199 x 10 ³ MPa
Condition H 1100	196 x 10 ³ MPa

Modulus of Elasticity (E)

Condition	X10 ³ ksi
H1000	28.8
H1100	28.4

Electrical Resistivity

21°C, Annealed/CT	945.7 micro-ohm-mm
21°C, Condition H 900	824.4 micro-ohm-mm
21°C, Condition H 1000	821.0 micro-ohm-mm
21°C, Condition H 1100	771.2 micro-ohm-mm

Electrical resistivity

Condition	Ohm-Cir mil/ft	Microhm/mm		
Annealed/CT	569	946		
H900 _	496	824		
H1000	494	822		
H1100	464	772		

Magnetic Properties

DC Magnetic Properties

Condition	Coercivity, H _c (Oe)	Saturation Induction, B _s (kG)
Annealed/CT	25.5	13.4
H900	23.3	13.8
H950	24.0	13.6
H1000	28.1	13.3
H1050	34.2	12.4
H1100	53.0	10.1

Saturation Flux Density

Annealed/CT	1.34000 T
H900	1.38000 T
H950	1.36000 T
H1000	1.33000 T
H1050	1.24000 T
H1100	1.01000 T
Coercivity	
Annealed/CT	2030 A/m
Н 900	1850 A/m
Н 950	1910 A/m
H 1000	2240 A/m
H 1050	2720 A/m
H 1100	4220 A/m

Typical Mechanical Properties

Effects of -65°F (-54°C) Test Temperature on Longitudinal Mechanical Properties —Custom 465 Stainless

4.25" diameter bar

Condition		est erature	Yi	2% eld ngth	Ter	nate sile ngth	Elonga- Reduc- T tion tion St		Strength		NTS/ UTS	V-Notch Impact (UDC)		ness.~
	۴F	°C	ksi	MPa	ksi	MPa	in 4D of Area	ksi	MPa		ft-lbs		K _{ic} (ksi√in)	
H950	73	23	242	1669	256	1765	13	62	372	2565	1.5	22	49.5	95
	-65	-54	258	1779	272	1875	12	53	240	1655	0.9	6	49.5	53
H975	73	23	235	1620	247	1703	13	61	372	2565	1.5	27	48.0	109
	-65	-54	249	1717	261	1800	14	58	305	2103	1.2	8	48.0	74
H1000	73	23	219	1510	231	1593	15	63	357	2461	1.5	41	47.5	129
	-65	-54	233	1606	245	1689	15	63	363	2503	1.5	15	47.5	87
H1050	73	23	201	1386	215	1482	17	66	330	2275	1.5	52	45.5	139
	-65	-54	210	1448	231	1593	18	63	343	2365	1.5	28	45.5	110

(1) $K_1 = 10$

(2) Hardness measurements made at room temperature on fractured CVN specimens
 (3) 1¼* - thick compact tension specimens

Effects of Exposure at Elevated Temperatures on Room Temperature Mechanical Properties—Custom 465 Stainless Bar* Thermal Stability, 10" Diameter Bar

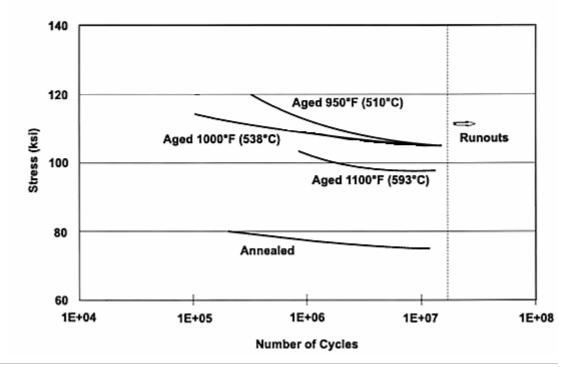
inomia orabing, io	Diamotor Bai										
Condition	0.2% Ultimate Yield Tensile Strength Strength		% Elongation in 4D	% Reduction of Area	Notch Tensile Strength**		Charpy V-Notch Impact		Hardness (HRC)		
	ksi	MPa	ksi	MPa			ksi	MPa	ft-lbs	J	
H1025	214	1475	227	1565	15	67	353	2434	36	49	47
H1025 + 600°F (316°C), 1000 hrs, AC	217	1496	230	1586	15	68	353	2434	32	43	47
H1025 + 700°F (371°C), 1000 hrs, AC	224	1544	235	1620	15	68	349	2406	23	31	·48
H1025 + 800°F (427°C), 1000 hrs, AC	231	1593	244	1682	14	63	344	2372	13	18	49
H1025 + 900°F (482°C), 1000 hrs, AC	219	1510	232	1600	16	66	331	2282	25	34	48
H1050	205	1413	220	1517	17	66	336	2317	43	58	46
H1050 + 600°F (316°C), 1000 hrs, AC	205	1413	220	1517	17	68	337	2324	39	53	46
H1050 + 700°F (371°C), 1000 hrs, AC	210	1448	225	1551	17	66	338	2330	28	38	47
H1050 + 800°F (427°C), 1000 hrs, AC	221	1524	234	1613	15	60	334	2303	18	24	48
H1050 + 900°F (482°C), 1000 hrs, AC	206	1420	221	1524	17	65	322	2220	30	41	46.5
1					A	^					

All longitudinal properties

"Notch tensile strength with Kr = 10

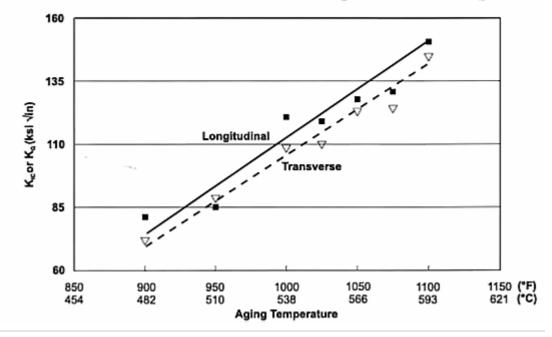
Effects of Exposure at Elevated Temperatures on Room Temperature Mechanical Properties—Custom 465 Stainless Bar*

Thermal Stability, 41/2" x 11/2" Forged Bar

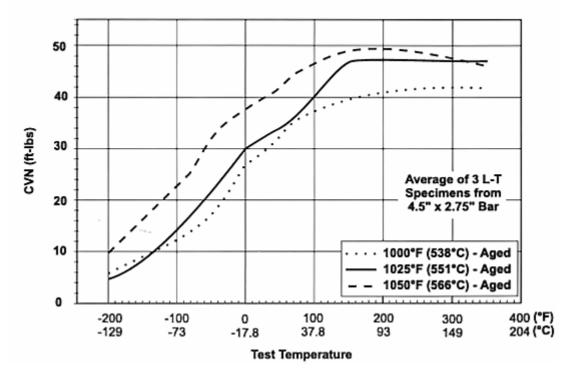

Condition	0.2% Ultimate Yield Tensile I Strength Strength		% Elongation in 4D	% Reduction of Area	Notch Tensile Strength**		Charpy V-Notch Impact		Hardness (HRC)		
	ksi	MPa	ksi	MPa			ksi	MPa	ft-lbs	J	1
H950	239	1648	255	1758	14	62	367	2530	20	27	49
H950 + 600°F (316°C), 1000 hrs, AC	242	1669	259	1786	16	59	354	2441	12	16	49.5
H950 + 700°F (371°C), 1000 hrs, AC	250	1724	268	1848	14	56	285	1965	11	15	51
H950 + 800°F (427°C). 1000 hrs, AC	253	1744	272	1875	13	54	271	1868	9	12	51.5
H950 + 900°F (482°C), 1000 hrs, AC	211	1455	223	1538	19	67	332	2289	34	46	46
H1000	218	1503	231	1593	16	66	355	2448	38	52	47
H1000 + 600°F (316°C), 1000 hrs, AC	219	1510	232	1600	18	65	354	2441	30	41	47
H1000 + 700°F (371°C), 1000 hrs, AC	226	1558	240	1655	16	65	350	2413	25	34	47.5
H1000 + 800°F (427°C), 1000 hrs, AC	229	1579	245	1689	15	62	347	2392	18	24	48
H1000 + 900"F (482"C), 1000 hrs, AC	210	1448	222	1531	20	66	327	2255	32	43	46

All longitudinal properties

**Notch tensile strength with K₁ = 10


Fatigue Strength—Custom 465 Stainless

Effects of aging temperature on the smooth rotating beam fatigue (R.R.Moore) strength of Custom 465 stainless are shown below. Data were developed from longitudinal specimens obtained from 4-1/2" x 1-1/2" forged bar. Specimens surviving at least 17 million cycles at 10 thousand cycles/minute were defined as "Runouts."


Fracture Toughness—Custom 465 Stainless

The fracture toughness, or resistance to rapid crack growth, of Custom 465 stainless is influenced by aging temperature and, to a lesser extent, by orientation. The effects of aging temperature (4 hrs., AC) are illustrated below for longitudinal (L-T) and transverse (T-L) compact tension specimens obtained from 4-1/2" x 1-1/2" forged bar. Because the specimen size was limited by the section size (i.e., 1-1/2" thick), data for aging temperatures of 1050-1100°F (566-593°C) are K_o values rather than K_{ie}.

Impact Properties—Custom 465 Stainless

Effects of aging temperature and test temperatures on the Charpy V-notch impact energy of Custom 465 stainless forged bar are illustrated below.

Shear Strength at Room Temperature – Custom 465® Stainless Double-Restrained Shear Strength

Condition*		e Tensile Ingth	Shear Strength		
	ksi	MPa	ksi	MPa	
Annealed	146	1007	90	621	
Annealed + 950°F (510°C) Age	253	1744	154	1062	
Annealed + 1000°F (538°C) Age	232	1600	141	972	
Annealed + 1050°F (566°C) Age	219	1510	133	917	
Annealed + 1100°F (593°C) Age	195	1344	124	855	
Annealed + 32% Cold Drawn	160	1103	96	662	
32% Cold Drawn + 950°F (510°C) Age	280	1931	169	1165	
32% Cold Drawn + 1000°F (538°C) Age	255	1758	159	1096	
32% Cold Drawn + 1025°F (552°C) Age	246	1696	154	1062	
71% Cold Drawn + 950°F (510°C) Age	288	1986	166	1145	
*Aged at indicated temperature, 4 hours, AC					

Short-Term Elevated-Temperature Longitudinal Tensile Properties – Custom 465® Stainless

~ ~~"	P .	
2.00*	diameter	bar

Condition	Test Temperature			Yield ngth	Ultim Tensile S		% Elong.	% Reduction
	°F	°C	ksi	MPa	ksi	MPa	in 4D	of Area
H1000	73	23	226	1558	235	1620	14	66
	500	260	191	1317	202	1393	14	67
	600	316	187	1289	199	1372	14	68
	700	371	183	1262	190	1310	15	69
	800	427	172	1186	178	1227	16	70

Typical Room Temperature Mechanical Properties	- Custom 465® Stainless Bar
(3" to 9" Round)	

<u><u> </u></u>	r to an ay											
Condition	Orientation	0.2% Yield Strength		g 0.2% Ultimate .		Elongation in 40	⊆ 2	Notch Tensile Strength ⁽¹⁾		NTS/UTS	Charpy V- Notch Impact	Hardness (HRC)
		ksi	MPa	ksi	MPa	8	%	ksi	MPa		ft- Ibs	Ξ
H950	Long.	240	1655	256	1765	12	57	359	2475	1.40	16	49.5
naso	Trans.	239	1648	256	1765	11	49	346	2386	1.35	13	49.5
H1000	Long.	217	1496	231	1593	14	63	352	2427	1.52	35	47.5
H 1000	Trans.	218	1503	232	1600	13	57	347	2392	1.50	28	47.5

Typical Room Temperature Mechanical Properties—Custom 465 Stainless Strip (.140"-Thickness and Under)

Condition	Orientation		Yield ngth		nate Strength	% Elongation	Rockwell Hardness
		ksi	MPa	ksi	MPa	in 2"	(HRC)
Annealed/CT	L T	105 110	724 758	145 150	1000 1034	7 6	30
H900	L T	245 250	1689 1724	260 265	1793 1827	5 5	51 —
H950	L T	240 245	1655 1689	250 260	1724 1793	6 5	50.5 —
H1000	L T	215 220	1482 1517	225 230	1551 1586	7 6	48
H1050	L T	195 200	1344 1379	210 215	1448 1482	8 7	45.5 —
H1100	L T	155 160	1069 1103	190 195	1310 1344	10 9	42

Typical Room Temperature Mechanical Properties—Custom 465 Stainless Wire

Condition	0.2% Yield Strength			mate Strength	% Elongation		Hardness (HRC)	
	ksi	MPa	ksi	MPa	in 4D	of Area	(nAC)	
Annealed/CT	112	772	138	951	20	75	29.5	
H900	247	1703	258	1779	14	51	50	
71% Cold Drawn	163	1124	174	1200	12	74	38.5	
71% Cold Drawn + 900"F (482°C) Age	293	2020	303	2089	10	57	55	

Typical Room Temperature Mechanical Properties – Custom 465® Stainless 4-1/2" x 1-1/2" and 4-1/2" x 2-3/4" Forged Bars

4-1/2" x 1-1/.		0 Yi	.2% ield ength	Ulti Te	mate nsile ength	. in 4D	Reduction of Area	N	TS*	NTS/	ess C)
Condition	Orientation	ksi	MPa	ksi	MPa	% Elong. in 4D	% Redu of Ar	ksi	MPa	UTS	Hardness (HRC)
Annealed/ CT	L	99	683	138	951	20	80				28
H950	L T	235 230	1620 1586	254 250	1751 1724	14 12	63 53	362 355	2496 2448	1.43 1.42	49
H1000	L T	217 211	1496 1455	231 227	1593 1565	15 15	65 61	352 349	2427 2406	1.52 1.54	47
H1025	L	204 204	1407 1407	218 218	1503 1503	17 16	65 61	343 341	2365 2351	1.57 1.56	46
H1050	L	198 196	1365 1351	215 213	1482 1469	18 17	67 63	326 324	2248 2234	1.52 1.52	45
H1075	L	179 180	1234 1241	203 202	1400 1393	20 19	69 67	313 309	2158 2130	1.54 1.53	43
H1100	L	159 158	1096 1089	190 190	1310 1310	22 21	71 65	280 278	1931 1917	1.47 1.46	40
H1150	L T	98 104	676 717	170 172	1172 1186	24 22	72 66	243 241	1675 1662	1.43 1.40	36
H1150M	L T	77 78	531 538	156 159	1076 1096	25 22	72 62	223 221	1538 1524	1.43 1.39	30

*Notch tensile strength with Kt = 10

Heat Treatment

Solution Treatment

Condition A (Solution Annealed)

Heat to 1800°F±15°F (982°C±8°C), hold one hour at heat and cool rapidly. Sections up to 12" can be quenched in a suitable liquid quenchant. Sections over 12" should be cooled rapidly in air. For optimum aging response, solution annealing should be followed by refrigerating to -100°F (-73°C), holding eight hours, then warming to room temperature (CT). Subzero cooling should be performed within 24 hours of solution annealing.

Custom 465 stainless normally will be supplied from the mill in the solution annealed/cold treated condition (annealed/CT), ready for the one-step hardening treatment. Billet product will be provided in the hot finished condition.

Average Size Change (Contraction)—Custom 465 Stainless Solution annealed/CT to aged condition

Condition	Contraction in/in (m/m)								
Condition	Longitudinal	Transverse							
H900	.0008	.0007							
H950	.0011	.0010							
H1000	.0014	.0013							
H1050	.0016	.0016							
H1100	.0023	.0023							
H1150M	.0053	.0053							

Age

Condition H 900, H 950, H 1000, H 1050 and H 1100

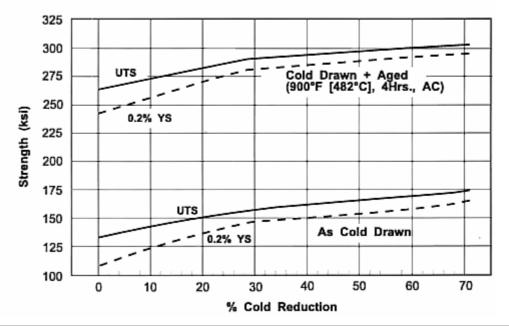
The high strength levels of Custom 465 stainless are derived from a single age hardening step consisting of heating to a selected temperature between 900/1150°F (482/621°C), holding for four to eight hours, followed by air cooling or suitable liquid quenchant. A liquid quench is preferred for section sizes greater than about 3". Aging temperature will depend upon the desired combination of strength, toughness and stress corrosion cracking resistance. While the alloy does develop maximum strength after a 900°F age, it is not recommended because toughness is significantly degraded compared to aging at higher temperatures. The best combination of properties is obtained after aging at 950°F (482°C) and above.

Condition H 1150M

While the alloy typically will be machined in the annealed/CT condition, optimum machinability of Custom 465 stainless can be achieved by overaging to the H 1150M condition. Material is heated to $1400^{\circ}F\pm15^{\circ}F$ ($760^{\circ}C\pm8^{\circ}C$) for two hours, air cooled, then reheated to $1150^{\circ}F\pm15^{\circ}F$ ($621^{\circ}C\pm8^{\circ}C$) for four hours and air cooled. If this practice is used, parts must be reannealed at $1800^{\circ}F$ ($982^{\circ}C$), cold treated at $-100^{\circ}F$ ($-73^{\circ}C$) and aged at a selected temperature.

Workability

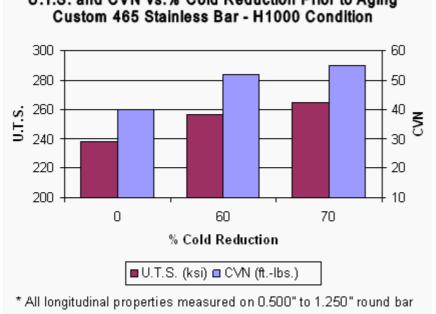
Hot Working

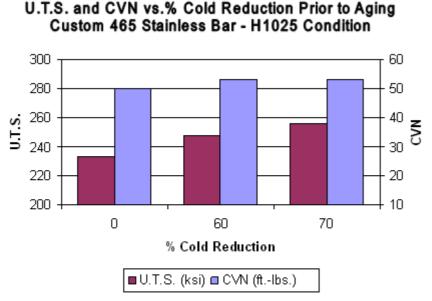

montability

Custom 465 stainless typically is forged within the temperature range of 1850/2000°F (1010/1093°C), followed by air cooling. Forgings must be solution annealed prior to age hardening.

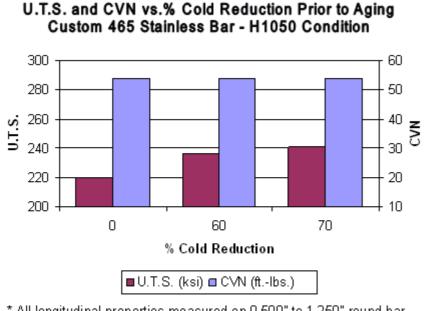
Cold Working

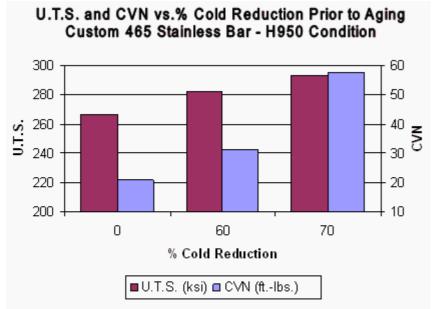
Because of a relatively low annealed yield strength and low work hardening rate, Custom 465 stainless can be readily cold formed by drawing or rolling. Single step aging of cold worked material results in enhanced strengthening response as illustrated in the hyperlink entitled "Effects of Cold Work and Aging on Yield and Ultimate Tensile Strengths".


Effects of Cold Work and Aging on Yield and Ultimate Tensile Strengths— Custom 465 Stainless Wire


Age	% C.R.		Yield ngth		e Tensile ngth	% El.	% R.A.
		ksi MPa		ksi MPa			
	0	258	1779	267	1841	11.5	63.5
H950	60	276	1902	282	1944	11.5	61.5
	70	286	1972	293	2020	11.0	58.5
	0	228	1572	238	1641	13.5	67.0
H1000	60	249	1717	257	1772	13.0	64.0
	70	256	1765	265	1827	12.5	61.0
	0	220	1517	233	1606	15.0	68.5
H1025	60	236	1627	247	1703	14.5	64.5
	70	243	1675	256	1765	14.0	61.5
	0	204	1407	220	1517	15.5	68.5
H1050	60	221	1524	236	1627	15.0	65.0
	70	224	1544	241	1661	14.5	62.5

Effects of Cold Working on Tensile Properties Prior to Aging -Custom 465® Stainless Bar* Final Bar Size 0.500" – 1.250" Round


* All longitudinal properties



* All longitudinal properties measured on 0.500" to 1.250" round bar

* All longitudinal properties measured on 0.500" to 1.250" round bar

* All longitudinal properties measured on 0.500" to 1.250" round bar.

Machinability

Custom 465 stainless can be machined in both the solution-treated and various age-hardened conditions. In Condition A the alloy gives good tool life and surface finish when machined at speeds 20 to 30% lower then those used for Carpenter Custom 630 (17Cr-4Ni) or 20 to 30% lower than used for Stainless Types 302 and 304. The machinability as age-hardened will improve as the hardening temperature is increased.

Condition H 1150M provides optimum machinability. Having procured Condition H1150M for best machinability, higher mechanical properties can be developed only by solution treating and heat treating at standard hardening temperatures.

Following are typical feeds and speeds for Custom 465 stainless.

Typical Machining Speeds and Feeds - Custom 465® Stainless

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning—Single-Point and Box Tools

rannig												
Depth	Micro-Melt@) Powder High S	Speed Tools		Carbide To	ols						
of Cut	Tool			Tool	Speed	(fpm)	Feed					
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)					
	Annealed											
.150	M48, T15	72	.015	C6	270	350	.010					
.025	M48, T15	84	.007	C7	325	425	.005					
	Aged											
.150	M48, T15	48	.010	C6	190	250	.010					
.025	M48, T15	54	.005	C7	225	290	.005					

Turning—Cut-Off and Form Tools

Tool M	aterial			Feed (ipr)									
Micro-	Car-	Speed	Cut-C	Cut-Off Tool Width (Inches) Form Tool Width (Inches)									
Melt® Powder HS Tools	bide Tools	(fpm)	1/16	1/8	1/4	1/2		1	1 ½	2			
Annealed													
M48, T15		72	.001	.0015	.002	.001	5	.001	.0007	.0005			
	C6	216	.003	.003	.007	.005	5	.004	.0035	.0035			
	Aged												
M48, T15		36	.001	.001	.0015	.001	5	.001	.0005	.0005			
	C6	132	.003	.003	.0045	.003	3	.002	.002	.002			

Rough Reaming

Í	Micro-Melt®		Carbide Tools		Feed (ipr)									
	Powder HS Tools		(inserts)			Reamer Diameter (inches)								
ſ	Tool	Speed	Tool	Speed	1/8	1/4	1/2	1	1 1/2	2				
	Material	(fpm)	Material	(fpm)		11-1	112			-				
ſ					Annea	aled								
	M48, T15	72	C2	190	.003	.005	.008	.011	.015	.018				
					Age	d								
l	M48, T15	36	C2	100	.001	.001	.001	.001	.001	.001				

Drilling

_																		
	High Speed Tools																	
Γ	Tool	Г	Speed	Т		F	eed (in	che	sperre	volution) l	Noi	minal Ho	le	Diame	ter	(inches	s)	
	Material		(fpm)	Γ	1/16	Τ	1/8	Т	1/4	1/2	Т	3/4	Г	1	Т	1 1/2	Т	2
Γ	Annealed																	
	M42		50		.001		.002		.004	.007		.008		.010		.012		.015
									Age	d								
L	M42	L	35		-		.001		.002	.003		.004		.004		.004		.004

Die Threading

FPM for High Speed Tools									
Tool Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi					
		Annealed							
M2, M7, M10	5-12	8-15	10-22	15-27					
		Aged							
T15, M42	4-8	6-10	8-12	10-15					

Milling, End-Peripheral

_															
Γ	Depti Micro-Mett® Powder High Speed Tools								Carbide Tools						
	ofĊ∎t	Tool	Speed	d Feed (p); Cutter Diameter (II)		Tool	Speed	Feed (ĵpnj Cutte	er Diame	ster (lii)				
	(lickes)	Material	((þín)	1/4	1/2	3/4	1-2	Material	(((¢m))	1/4	1/2	3/4	1-2		
Г	Annealed														
	.050	M 48, T15	108	.001	.002	.003	.004	C2	275	.001	.002	.004	.006		
İ	Aged														
Ĺ	.050	M 48, T 15	72	.0005	.001	.002	.003	C2	90	.001	.002	.003	.004		

Tapping

Broaching

High Spe	ed Tools	Micro-Melt® Powder High Speed Tools						
Tool Material	Speed (fpm)	Tool Material Speed (fpm)	Chip Load (ipt)					
Anne	aled	Annealed						
j M7, M10	12-25	M48, T15 9.6	.002					
Age	ed be	Aged						
M7, M10 Nitrided	5-15	M48, T15 12	.002					

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

Custom 465 stainless can be satisfactorily welded by the GTA process using matching filler metal. When the GMA process is employed, Pyromet® X-23 alloy filler metal is suggested to provide high strength and avoid weld-bead cracking associated with this higher-heat-input process.

Welds should be fabricated employing the minimum amount of heat-input required to achieve complete penetration. If lower strength can be tolerated, Custom 450® stainless or Custom 630 stainless filler metal may be used. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. Preheating is not required to prevent cracking during the welding of this alloy.

The material has been welded satisfactorily in the overaged or solution annealed/cold treated condition. Welding in the overaged (H1150M) condition requires subsequent solution annealing with cold treating and aging. Direct aging of weldments on annealed base metal is possible, but hardness throughout the weld is not uniform. The optimum combination of properties is obtained by solution annealing and cold treating the weldment and then aging.

Other Information		
Applicable Specifications		
• AMS 5936	 ASTM A564 	
 ASTM A693 	 ASTM F899 	
 MMPDS-01 		
Forms Manufactured		
Bar-Flats	Bar-Rounds	
Bar-Squares	Billet	
Strip	Wire	

- A Guide to Etching Specialty Alloys for Microstructural Evaluation
- Advanced Stainless Offers High Strength, Toughness and Corrosion Resistance Wherever Needed
- An Evaluation of Alloys for Golf Club Face Plates
- Higher Performance Material Solutions for a Dynamic Spine Market
- How to Passivate Stainless Steel Parts
- Improved Stainless Steels for Medical Instrument Tubing
- New Ideas for Machining Austenitic Stainless Steels
- New Ph Stainless Combines High Strength, Fracture Toughness and Corrosion Resistance
- New Requirements for Ferrous-Base Aerospace Alloys

New Stainless Hand Tools Have High Strength, Toughness for Service in Corrosive or Clean Room Environments

- New Stainless Steel for Instruments Combines High Strength and Toughness
- One of the Word's Most Powerful Revolvers Gets Lift From Aerospace Alloys
- Passivating and Electropolishing Stainless Steel Parts
- Selecting New Stainless Steels for Unique Applications
- Selecting Stainless Steels for Valves
- Selection of High Strength Stainless Steels for Aerospace, Military and Other Critical Applications
- Specialty Alloys And Titanium Shapes To Consider For Latest Medical Materials Requirements
- Steels for Strength and Machinability

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation. Copyright 2010 CRS Holdings Inc. All rights reserved.

Edition Date: 1/8/08