

# **INVAR**<sup>®</sup>

## CONTROLLED EXPANSION ALLOYS

### (Alloy developed by Imphy in 1896. Registered trademark)

#### **INTRODUCTION**

INVAR is a Fe-Ni alloy with a 36% nickel content that exhibits the lowest expansion of known metals and alloys from the lowest temperatures up to approximately 230°C.

It is used in particular for:

- thermostat rods
- clock balance wheels
- precision condenser blades
- radar cavity resonators

- metrology applications, monitoring of civil engineering structures
- seals, spacers and specialised frames
- the manufacture of thermal bimetallic strips
- integral holds on gas carriers (M93)
- liquefied gas transfer lines (M93)
- television applications: Shadow Mask, frames, suspensions, electron gun components.
- electronic applications: special electronic housings.

• moulds for composites

#### TYPICAL ANALYSIS

The Fe-Ni alloys in the Invar range developed by Imphy Alloys feature optimised chemical compositions in order to achieve the best balance between expansion and the other properties required by the applications: mechanical properties, weldability, structural stability at cryogenic temperature, etc.

The content by weight of the principal chemical elements is given in the table below.

| Grade      | Ni  | Co    | Fe          |
|------------|-----|-------|-------------|
| ln v a r   | 3 6 | < 0.4 | rem ain der |
| lnvar-M93  | 3 6 | < 0.2 | rem ain der |
| ln o v a r | 3 6 | < 0.1 | rem ain der |
| Microvar   | 3 6 | 0.25  | rem ain der |
| lnovco     | 3 3 | 4.5   | rem ainder  |

ArcelorMittal | Stainless & Nickel Alloys

5 rue Luigi Cherubini 93212 SAINT DENIS Cedex FRANCE t +33 (0)1 71 92 00 00

e info@imphy.com

www.imphy.com

#### **GRADES**

The Invar grades developed by Imphy Alloys can be categorised into six groups:

|                                                       |                                                                  | Typical values                                                                                |
|-------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| INVAR                                                 | $\alpha_m$ between 20° and 100°C                                 | $1.2 \ge 10^{-6} C^{-1}$                                                                      |
| INVAR-M93                                             | $\alpha_{\rm m}$ between $-180^{\circ}$ and $100^{\circ}{\rm C}$ | $\frac{1.5 \times 10^{-6_{\circ}} \text{ C}^{-1}}{1.3 \times 10^{-6_{\circ}} \text{ C}^{-1}}$ |
| (Cryogenic Invar with improved weldability)           | $\alpha_m$ between 20° and 100°C                                 | 1.3 x 10 ° C                                                                                  |
| INOVAR                                                | $\alpha_{\rm m}$ between 20° and 100°C                           | 0.65 x 10 <sup>-6</sup> ° C <sup>-1</sup>                                                     |
| (Invar with low residuals, low expansion coefficient) |                                                                  |                                                                                               |
| MICROVAR *                                            | $\alpha_{\rm m}$ between 20° and 100°C                           | $0.65 \ge 10^{-6} \text{ C}^{-1}$                                                             |
| (Inovar with low cobalt content and                   |                                                                  |                                                                                               |
| enhanced mechanical properties)                       |                                                                  |                                                                                               |
| INOVCO *                                              | $\alpha_{\rm m}$ between 20° and 100°C                           | $0.55 \ge 10^{-6} \text{ C}^{-1}$                                                             |
| (Invar with cobalt, very low expansion                |                                                                  |                                                                                               |
| coefficient and enhanced mechanical                   |                                                                  |                                                                                               |
| properties)                                           |                                                                  |                                                                                               |
| HARDENED INVAR *                                      | $\alpha_{\rm m}$ between 20° and 100°C                           | 2.75 x 10 <sup>-6</sup> ° C <sup>-1</sup>                                                     |
| (Invar with elevated mechanical                       |                                                                  |                                                                                               |
| properties, hardened by precipitation of              |                                                                  |                                                                                               |
| the g'-Ni <sub>3</sub> (Ti, Al) phase                 |                                                                  |                                                                                               |

- NB: Measurements are conducted after heat treatment at 950° for 30 minutes followed by cooling in air. On hardened Invar, the measurements are conducted following hardening heat treatment at 750°C. Other types of measurement / treatment are possible on request
- \* These products are only supplied for use on specific projects.

#### TYPICAL PHYSICAL PROPERTIES

Only Inovco and hardened Invar exhibit significantly different physical properties to those of Invar. This divergence is due to the addition of chemical elements (Co, Ti).

| Invar Grade    | Curie<br>Temperature<br>(℃) | Melting point<br>(℃) | Resistivity<br>at 20℃<br>(µW.cm) | Thermal<br>conductivity<br>at 20℃<br>(W.m <sup>-1</sup> .℃ <sup>-1</sup> ) | Specific heat<br>at 20℃<br>(J.m <sup>-1</sup> .℃ <sup>-1</sup> ) | Density<br>(g.cm <sup>-3</sup> ) |     |
|----------------|-----------------------------|----------------------|----------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|-----|
| Invar          |                             |                      |                                  |                                                                            |                                                                  |                                  |     |
| Invar-M93      | 230                         | 1450                 | 75                               | 10.5                                                                       | 0.51                                                             |                                  |     |
| Inovar         | 230                         | 230                  | 1450                             | 15                                                                         | 10.5                                                             | 0.51                             | 8.1 |
| Microvar       |                             |                      |                                  |                                                                            |                                                                  | 0.1                              |     |
| Inovco         | 220                         | 1470                 | 80                               | 10.5                                                                       | 0.51                                                             |                                  |     |
| Hardened Invar | 220                         | 1410                 | 80                               | 14.1                                                                       | 0.49                                                             |                                  |     |

The Fe-Ni alloys in the Invar range are characterised by a mean expansion coefficient, close to ambient temperature, of less than  $3.5 \times 10^{-6} \, \text{C}^{-1}$ . The low expansion of these alloys is only observed below the Curie temperature.

#### Mean expansion coefficient $\alpha_m \, 10^{-6} \circ C$

|                                  | -180℃ | 20℃ to 100℃ | 20℃ to 200℃ | 20℃ to 300℃ | 20℃ to 400℃ | 20℃ to 500℃ |
|----------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Invar                            | 1.8   | 1.2         | 2.3         | 4.8         | 7.5         | 8.9         |
| Invar-M93                        | 1.5   | 1.3         | 2.4         | 4.9         | 7.6         | 9.0         |
| Inovar                           | 1.4   | 0.65        | 1.9         | 4.8         | 7.6         | 9.6         |
| Microvar                         | 1.4   | 0.65        | 1.7         | 4.6         | 7.5         | 9.5         |
| Inovco                           |       | 0.55        | 1.5         | 4.4         | 7.3         | 9.3         |
| Hardened<br>Invar <sup>(1)</sup> | 4.5   | 2.8         | 4.0         | 6.5         | 9.0         | 10.5        |

 $^{(1)}$ : Hardened at 750°C for 30 minutes, from an anneal ed supply condition.

#### **TYPICAL MECHANICAL PROPERTIES FOR COLD-ROLLED PRODUCTS**

The Fe-Ni alloys in the Invar range exhibit mechanical properties in the range 250 MPa - 1000 MPa. Control of residual chemical elements and the fine-grained austenitic structure of these grades endow them with excellent ductility (elongation at fracture and impact strength).

|                |                                          | Anneale                                   | ed - 850℃ - 1 | Strain-hardened 25%                    |                      |                                          |                                          |                                      |         |  |   |     |     |  |
|----------------|------------------------------------------|-------------------------------------------|---------------|----------------------------------------|----------------------|------------------------------------------|------------------------------------------|--------------------------------------|---------|--|---|-----|-----|--|
| Grade          | Rp <sub>0.2%</sub><br>(MPa)              | Rm<br>(MPa)                               | E<br>(MPa)    | A<br>(%)                               | Grain size<br>(ASTM) | Rp <sub>0.2%</sub><br>(MPa)              | Rm<br>(MPa)                              | A<br>(%)                             |         |  |   |     |     |  |
| Invar          | 260                                      | 455                                       |               |                                        | 8                    | 560                                      | 575                                      |                                      |         |  |   |     |     |  |
| Invar-M93      | 270                                      | 465                                       | 130 000       | 120.000                                | 120.000              | 120.000                                  | 120.000                                  | 120.000                              | 130.000 |  | 8 | 570 | 580 |  |
| Inovar         | 260                                      | 455                                       |               | > 30                                   | 8                    | 560                                      | 570                                      | > 5                                  |         |  |   |     |     |  |
| Microvar       | 290                                      | 470                                       |               |                                        | 9                    | 600                                      | 630                                      |                                      |         |  |   |     |     |  |
| Inovco         | 300                                      | 480                                       | 125 000       |                                        | 8                    | 610                                      | 650                                      |                                      |         |  |   |     |     |  |
| Hardened Invar | <sup>(1)</sup> 300<br><sup>(2)</sup> 775 | <sup>(1)</sup> 580<br><sup>(2)</sup> 1100 | 155 000       | <sup>(1)</sup> 33<br><sup>(2)</sup> 15 | 8                    | <sup>(3)</sup> 750<br><sup>(4)</sup> 950 | <sup>(3)</sup> 775<br><sup>(4)</sup> 990 | <sup>(3)</sup> 7<br><sup>(4)</sup> 6 |         |  |   |     |     |  |

<sup>(1)</sup>: Annealed supply condition.
<sup>(2)</sup>: Hardened at 750°C for 30 minutes, from an anneal ed supply condition.
<sup>(3)</sup>: Strain-hardened supply condition.
<sup>(4)</sup>: Hardened supply condition.

|                     | Invar/Inovar<br>Annealed - 850°C - 15 mins |             |            | ln var / In o var<br>Strain - hardened 25% |                             | Hardened Invar<br>(1) |          |                                |             |            |          |
|---------------------|--------------------------------------------|-------------|------------|--------------------------------------------|-----------------------------|-----------------------|----------|--------------------------------|-------------|------------|----------|
| Temperature<br>(°C) | R р <sub>0.2%</sub><br>(МРа)               | Rm<br>(MPa) | E<br>(MPa) | A<br>(%)                                   | Кр <sub>0.2%</sub><br>(МРа) | Rm<br>(MPa)           | A<br>(%) | R р <sub>0.2 %</sub><br>(М Ра) | Rm<br>(MPa) | E<br>(MPa) | A<br>(%) |
| 2 0                 | 260                                        | 455         | 130,000    | 30                                         | 560                         | 575                   | 7        | 775                            | 1100        | 155,000    | 15       |
| 100                 | 210                                        | 410         | 135,000    | 3 2                                        | 550                         | 565                   | 5.5      | 750                            | 1050        | 159,000    | 15       |
| 200                 | 130                                        | 350         | 142,000    | 33                                         | 510                         | 550                   | 3.5      | 660                            | 1000        | 165,000    | 18       |
| 300                 | 100                                        | 325         | 146,000    | 33                                         | 480                         | 485                   | 3        | 630                            | 950         | 170,000    | 2 0      |
| 4 0 0               | 90                                         | 290         | 143,000    | 3 5                                        | 410                         | 430                   | 3.5      | 620                            | 900         | 165,000    | 2 0      |
| 500                 | 85                                         | 260         | 140,000    | 3 5                                        | 310                         | 340                   | 9        | 600                            | 860         | 160,000    | 2 0      |
| 600                 | 75                                         | 210         | 137,000    | 3 5                                        | 240                         | 275                   | 18       | 580                            | 730         | 150,000    | 15       |
| 700                 | 73                                         | 130         | 134,000    | 30                                         | 90                          | 130                   | 3 0      | 520                            | 560         | 145,000    | 1 0      |

(1) : Hardened at 750  ${\rm {\sc C}}$  for 30 minutes, from an ann ealed supply condition.

#### TYPICAL MECHANICAL PROPERTIES FOR HOT-FINISHED INVAR PRODUCTS

| -              |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|----------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grain<br>size  | Vickers<br>hardness<br>HV30      | Rm (MPa)                                                             | Rp0.2%(MPa)                                                                                                                                                                                                                                                             | A% (50 mm)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ASTM E-<br>112 | NF EN ISO<br>6507                | NF EN ISO 10002-15                                                   | NF EN ISO 10002-15                                                                                                                                                                                                                                                      | NF EN ISO 10002-15                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3 à 10         | 130 - 220                        | 400 – 550                                                            | 200 – 350                                                                                                                                                                                                                                                               | > 20                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 150 - 250                        | 650 - 850                                                            |                                                                                                                                                                                                                                                                         | > 5                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 100 - 150                        |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 100 - 150                        |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | > 110                            |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                  |                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | size<br>ASTM E-<br>112<br>3 à 10 | size hardness<br>HV30<br>ASTM E-<br>112 6507<br>3 à 10 130 - 220<br> | size     hardness<br>HV30       ASTM E-<br>112     NF EN ISO<br>6507     NF EN ISO 10002-15       3 à 10     130 - 220     400 - 550       3 à 10     130 - 220     400 - 550       100 - 250     650 - 850       100 - 150     100 - 150       100 - 150     100 - 150 | size     hardness<br>HV30     NT E     NF EN ISO<br>6507     NF EN ISO 10002-15     NF EN ISO 10002-15       ASTM E-<br>112     NF EN ISO<br>6507     NF EN ISO 10002-15     NF EN ISO 10002-15       3 à 10     130 - 220     400 - 550     200 - 350       3 à 10     130 - 220     400 - 550     200 - 350       150 - 250     650 - 850     100 - 150     100 - 150       100 - 150     100 - 150     100 - 150     100 - 150 |

The physical properties are measured in the recrystallised condition

NB: Other tests can be performed on request

#### TYPICAL MAGNETIC PROPERTIES

|       |                   |                                                                 | B <sub>10</sub><br>(G) | Hc<br>(A/m) | μ <sub>max</sub> | μ <sub>anh</sub><br>at 0.4 Oe |
|-------|-------------------|-----------------------------------------------------------------|------------------------|-------------|------------------|-------------------------------|
|       | Invar             |                                                                 |                        | 27          | 9 500            | 18 000                        |
|       | Inovar            | Annealed                                                        | 12 500                 | 25          | 12 000           | 19 000                        |
|       | Microvar          | 850℃ - 15 mins                                                  |                        | 45          | 6 000            | 13 500                        |
| Grade | Inovco            |                                                                 | 11 700                 | 43          | 6 300            | 14 000                        |
| Grade | Hardened<br>Invar | Hardened on<br>annealed supply<br>condition<br>(750℃ - 30 mins) | 11 750                 | 38          | 4 900            | 9 000                         |

 $\mu_{anh}$ : anhysteretic permeability

#### SUPPLY FORMS

Cold-rolled products Strip Plate Hot-finished products Round - Disc Rod Plate Flat – Square Ring Billet – Block – Sheet bar

#### **PROCESSING PARAMETERS**

- Consult us in respect of Microvar and hardened Invar.
- For Invar, Inovar and Inovco:

#### Machining

|              | Turning     | Milling | Drillin a   |
|--------------|-------------|---------|-------------|
|              | Turning     | Milling | Drilling    |
| Tool         | Carbide     | Super   | High        |
|              | S3 or 34    | HSS     | speed       |
|              |             |         | steel       |
| Coolant/     | Soluble     | Soluble | Soluble     |
| Lubricant    | oil         | oil     | oil         |
| Cutting      | 12 – 17°    | 15°     |             |
| angle        |             |         |             |
| Relief angle | 5 – 8°      | 3 – 7°  | 9 – 13°     |
| Cutting      | 50 – 75     | 10 – 15 | 10          |
| speed        |             |         |             |
| (m/min)      |             |         |             |
| Feed rate    | 0.2 – 0.5   | 0.05 –  | 0.10        |
| mm/          | /revolution | 0.10    | /revolution |
|              |             | /tooth  |             |

#### Brazing:

In order to avoid any risk of stress corrosion cracking when brazing, the parts to be joined must be free from residual stresses. This condition is attained by stress-relief annealing at 700-800°C. Brazing with copper or sil vercopper with or without palladium produces very good results on stress-relieved Invar. The use of tin or white tin softbrazing solder can also be adopted.

#### Welding:

Welding should preferably be carried out in the annealed condition. Oxy-acetylene, TIG and resistance welding can be performed, taking the same type of precautions as for stainless alloys.

For complex fabricated joints (intersecting welds) and for thicknesses in excess of 2 mm, it is possible, depending on the application requirements, to use either Invar-M93, Invar-M93T or INVAR-Ti.Mn wire (consult us).

Refer to the specific welding technical data sheets for Invar M93 and M93T.

#### Baking Invar :

- For stress relief:
  - Rolled, drawn, forged, machined, etc. products generally exhibit residual stresses. In the case of high-precision machining with substantial material removal, it is recommended that a stress relief treatment for 3 hours at 315℃ followed by slow cooling be performed between rough and finish machining.
  - For accelerated aging: Furthermore, Invar is subject to some dimensional instability due to physicochemical effects. It is therefore necessary to perform accelerated aging of the metal before use, by baking as follows: 24 hours at 100℃ followed by slow cooling to ambient temperature (25℃/24h).

#### **Corrosion resistance**:

Despite its high nickel content, which affords it some resistance to oxidation, the INVAR alloy cannot be compared, as regards corrosion resistance, to so-called stainless alloys such as type 18/8 alloys for example. Careful polishing significantly improves its resistance to oxidation. Obviously, it is possible to employ the traditional methods of protection (varnishing, electroplating).